23 research outputs found

    Fibroblast Growth Factor Receptor, a Novel Receptor for Vegetative Insecticidal Protein Vip3Aa

    No full text
    Vegetative insecticidal proteins (Vips), which are secreted by some Bacillus thuringiensis strains during vegetative growth, exhibit high virulence to many pests. Vip3A proteins have been used commercially both in some bio-insecticides and in transgenic crops; however, compared with insecticidal crystal proteins, the mechanism of action of Vip3A is still unclear. In this work, we indicated that the fibroblast growth factor receptor-like protein (Sf-FGFR) from the membrane of Sf9 cells could bind to Vip3Aa. The interaction between Vip3Aa and Sf-FGFR was confirmed by pull-down assays and dot blotting experiment in vitro. The binding affinity between Vip3Aa and extracellular regions of Sf-FGFR (GST-FGFR-N) was determined by microscale thermophoresis assay (MST). Moreover, Vip3Aa-Flag could be co-immunoprecipitated with Sf-FGFR-V5 ex vivo. Furthermore, knockdown of Sf-FGFR gene in Sf9 cells resulted in reducing the mortality of those cells to Vip3Aa. In summary, our data indicated that Sf-FGFR is a novel receptor for Vip3Aa

    Seawater carbonate chemistry and physiological parameters of Thalassiosira sp. and Nitzschia closterium f.minutissima

    No full text
    Marine diatoms are one of the marine phytoplankton functional groups, with high species diversity, playing important roles in the marine food web and carbon sequestration. In order to evaluate the species-specific responses of coastal diatoms to the combined effects of future ocean acidification (OA) and warming on the coastal diatoms, we conducted a semi-continuous incubation on the large centric diatom Thalassiosira sp. (~30 μm) and small pennate diatom Nitzschia closterium f.minutissima (~15 μm). A full factorial combination of two temperature levels (15 and 20°C) and pCO2 (400 and 1,000 ppm) was examined. The results suggest that changes in temperature played a more important role in regulating the physiology of Thalassiosira sp. and N. closterium f.minutissima than CO2. For Thalassiosira sp., elevated temperature significantly reduced the cellular particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphate (POP), biogenic silica (BSi), chlorophyll a (Chl a), and protein contents, and the C:N ratio. CO2 only had significant effects on the growth rate and the protein content. However, for the smaller pennate diatom N. closterium f.minutissima, the growth rate, POC production rate, and the C:P ratio significantly increased with an elevated temperature, whereas the cellular POP and BSi contents significantly decreased. CO2 had significant effects on the POC production rate, cellular BSi, POC, and PON contents, the C:P, Si:C, N:P, and Si:P ratios, and sinking rate. The interaction between OA and warming showed mostly antagonistic effects on the physiology of both species. Overall, by comparison between the two species, CO2 played a more significant role in regulating the growth rate and sinking rate of the large centric diatom Thalassiosira sp., whereas had more significant effects on the elemental compositions of the smaller pennate diatom N. closterium f.minutissima. These results suggest differential sensitivities of different diatom species with different sizes and morphology to the changes in CO2/temperature regimes and their interactions

    A Cardiovascular Disease Risk Score Model Based on High Contribution Characteristics

    No full text
    Cardiovascular disease (CVD) risk prediction shows great significance for disease diagnosis and treatment, especially early intervention for CVD, which has a direct impact on preventing and reducing adverse outcomes. In this paper, we collected clinical indicators and outcomes of 14,832 patients with cardiovascular disease in Shanxi, China, and proposed a cardiovascular disease risk prediction model, XGBH, based on key contributing characteristics to perform risk scoring of patients’ clinical outcomes. The XGBH risk prediction model had high accuracy, with a significant improvement compared to the baseline risk score (AUC = 0.80 vs. AUC = 0.65). At the same time, we found that with the addition of conventional biometric variables, the accuracy of the model’s CVD risk prediction would also be improved. Finally, we designed a simpler model to quantify disease risk based on only three questions answered by the patient, with only a modest reduction in accuracy (AUC = 0.79), and providing a valid risk assessment for CVD. Overall, our models may allow early-stage intervention in high-risk patients, as well as a cost-effective screening approach. Further prospective studies and studies in other populations are needed to assess the actual clinical effect of XGBH risk prediction models

    The E3 Ligase GmPUB21 Negatively Regulates Drought and Salinity Stress Response in Soybean

    No full text
    E3-ubiquitin ligases are known to confer abiotic stress responses in plants. In the present study, GmPUB21, a novel U-box E3-ubiquitin ligase-encoding gene, was isolated from soybean and functionally characterized. The expression of GmPUB21, which possesses E3-ubiquitin ligase activity, was found to be significantly up-regulated by drought, salinity, and ABA treatments. The fusion protein GmPUB21-GFP was localized in the cytoplasm, nucleus, and plasma membrane. Transgenic lines of the Nicotiana benthamiana over-expressing GmPUB21 showed more sensitive to osmotic, salinity stress and ABA in seed germination and inhibited mannitol/NaCl-mediated stomatal closure. Moreover, higher reactive oxygen species accumulation was observed in GmPUB21 overexpressing plants after drought and salinity treatment than in wild-type (WT) plants. Contrarily, silencing of GmPUB21 in soybean plants significantly enhanced the tolerance to drought and salinity stresses. Collectively, our results revealed that GmPUB21 negatively regulates the drought and salinity tolerance by increasing the stomatal density and aperture via the ABA signaling pathway. These findings improved our understanding of the role of GmPUB21 under drought and salinity stresses in soybean

    Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving

    No full text
    Current particle sorting methods such as microfluidics, acoustics, and optics focus on exploiting the differences in the mass, size, refractive index, or fluorescence staining. However, there exist formidable challenges for them to sort label-free submicron particles with similar volume and refractive index yet distinct shapes. In this work, we report an optofluidic nanophotonic sawtooth array (ONSA) that generates sawtooth-like light fields through light coupling, paving the physical foundation for shape-selective sieving. Submicron particles interact with the coupled hotspots which impose different optical torques on the particles according to their shapes. Unstained S. aureus and E. coli are used as a model system to demonstrate this shape-selective sorting mechanism based on the torque-induced body dynamics, which was previously unattainable by other particle sorting technologies. More than 95% of S. aureus is retained within ONSA, while more than 97% of E. coli is removed. This nanophotonic chip offers a paradigm shift in shape-selective sorting of submicron particles and expands the boundary of optofluidics-based particle manipulation.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio
    corecore